An Integrated Approach to Hyperspectral Feature Extraction

نویسنده

  • Stuart Blundell
چکیده

This paper presents a novel hyperspectral feature-extraction toolkit that provides a simple, automated, and accurate approach to materials classification from hyperspectral imagery (HSI). The proposed toolkit is built as an extension to the state-of-the-art technology in automated feature extraction, the Feature Analyst software suite. Feature Analyst uses, along with spectral information, feature characteristics such as spatial association, size, shape, texture, pattern, and shadow in its generic feature extraction process. While current HSI techniques, such as spectral endmember classification, can provide effective materials classification, these methods are slow (or manual), cumbersome, complex for analysts, and are limited to materials classification only. Feature Analyst, on the other hand, has a simple workflow of (a) an analyst providing a few examples, and (b) an advanced software agent classifying the rest of the imagery; however, Feature Analyst does not have effective pre-processing approaches for handling numerous image bands found in HSI. The approach presented in this paper integrates the best of traditional HSI processing with the Feature Analyst approach to produce a powerful new approach that promises to become the new paradigm for HSI materials classification. Experiments presented in this paper show the new approach is (a) accurate, (b) simple, (c) advanced, and (d) exists as a workflow extension to market leading products, such as ArcGIS and ERDAS IMAGINE.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery

Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...

متن کامل

کاهش ابعاد داده‌های ابرطیفی به منظور افزایش جدایی‌پذیری کلاس‌ها و حفظ ساختار داده

Hyperspectral imaging with gathering hundreds spectral bands from the surface of the Earth allows us to separate materials with similar spectrum. Hyperspectral images can be used in many applications such as land chemical and physical parameter estimation, classification, target detection, unmixing, and so on. Among these applications, classification is especially interested. A hyperspectral im...

متن کامل

Feature reduction of hyperspectral images: Discriminant analysis and the first principal component

When the number of training samples is limited, feature reduction plays an important role in classification of hyperspectral images. In this paper, we propose a supervised feature extraction method based on discriminant analysis (DA) which uses the first principal component (PC1) to weight the scatter matrices. The proposed method, called DA-PC1, copes with the small sample size problem and has...

متن کامل

Feature extraction of hyperspectral images using boundary semi-labeled samples and hybrid criterion

Feature extraction is a very important preprocessing step for classification of hyperspectral images. The linear discriminant analysis (LDA) method fails to work in small sample size situations. Moreover, LDA has poor efficiency for non-Gaussian data. LDA is optimized by a global criterion. Thus, it is not sufficiently flexible to cope with the multi-modal distributed data. We propose a new fea...

متن کامل

Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations

The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008